

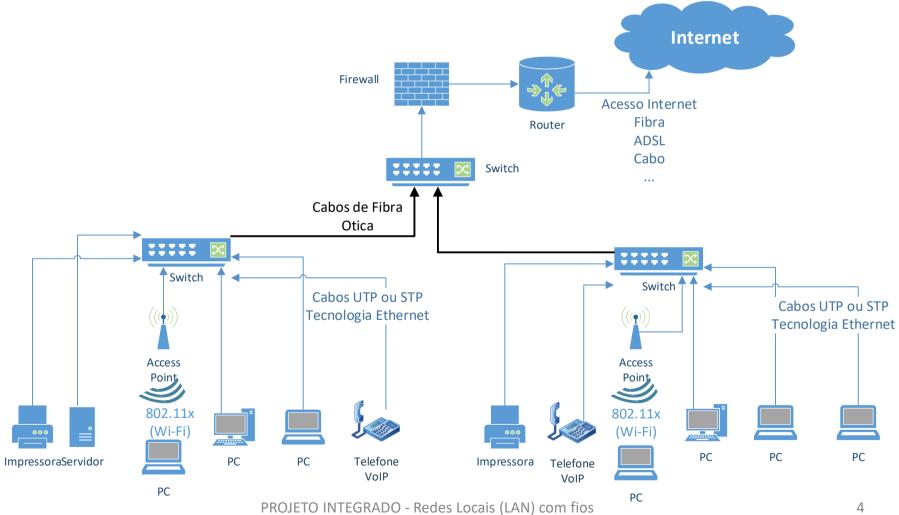
SISTEMAS E REDES MULTISERVIÇO

Capítulo 2
Tecnologias e QoS em Redes Locais

RESUMO

- Redes Locais (LAN)
- Redes com fios:
 - Ethernet e suas variantes
 - Tipos de Cablagem
 - Equipamentos de comutação
- Redes Sem Fios
- Qos em Redes LAN

Astio


RECORDAR: LAN

- Redes Locais (Local Area Network)
- Abrange área limitada (edifício, campus), é gerida por uma única entidade;
- Principais tecnologias:
 - Com fios: Ethernet IEEE802.3
 - Sem fios: Wi-Fi IEEE802.11
- Comutação de pacotes (tramas)
- Todos os equipamentos ligados têm um endereço unívoco (MAC Address)
- Tipicamente topologia em estrela

REDES LAN com fios

Estrutura típica das LANs

Astio

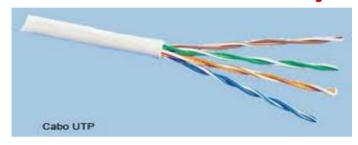
REDES LAN com fios

- Estado da arte das redes com fios
 - Tecnologia: Ethernet
 - Mais comum: Gigabit Ethernet (1 Gbps) mas ainda há muitas
 FastEthernet (100 Mbps)
 - Cablagem de cobre de pares entrançados (UTP, FTP ou STP) no acesso aos utilizadores
 - Fibra ótica monomodo na rede de distribuição e core
 - Topologia: em estrela
 - Utilização de Switchs (Hubs em desuso)
 - A instalação dos componentes passivos segue as regras da "Cablagem Estruturada"
 - Aplicações cada vez mais diversas e exigentes da rede mail, acesso web, VoIP, Bases de dados, vídeos, softwares de gestão, etc. - > maior largura de banda e QoS

Astio

TRAMA ETHERNET

Em qualquer variante Ethernet:


	Preamble	SFD	DA	SA	Туре	Data	Pad	FCS
Byte	es 7	1	6	6	2	46 a 1500	—	4

- Preamble
 - sequência de 1s e 0s alternados (sincronização do receptor)
- Start Frame Delimiter (SFD)
 - Delimitador de início de trama (10101011)
- Destination/Source Address (6B+6B)
 - Endereços MAC (físico) do nó destinatário/emissor
- Length ou Type (2B)
 - Comprimento (bytes) dos dados ou tipo de pacote
- Data (46 a 1500)
 - Campo de dados da camada superior
- Pad (padding) (até garantir 64B)
 - Garantir comprimento mínimo da trama (64B excluindo Preamble e SFD)
- Frame Check Sequence
 - Código detector de erros

MEIOS FÍSICOS DE TRANSMISSÃO

Condutores metálicos – Pares entrançados

- São os mais utilizados em LANs com fios Ethernet.
- Têm 4 pares de fios entrançados
- Boa resistência a interferências eletromagnéticas: Os pares são enrolados em torno de si próprios. As interferências afetam os dois fios de forma igual pelo que a diferença de potencial se mantém
- Podem ser sem blindagem: *Unshielded Twisted Pair (UTP)*, ou com blindagem: *Shielded Twisted Pair (STP)* e *FTP (Foiled Twisted Pair)*

EQUIPAMENTOS PASSIVOS: MEIOS FÍSICOS DE TRANSMISSÃO

•CABOS DE PARES ENTRANÇADOS

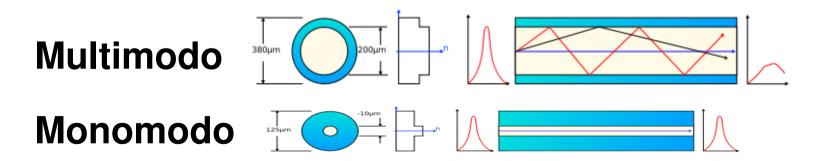
UTP	Unshielded Twisted Pair	Os pares de fios estão entrelaçados entre si sem proteção adicional			
FTP	Foiled Twisted Pair	Cada par de fios tem uma blindagem para proteção adicional contra interferências externas e entre pares			
S/UTP & F/UTP	Shielded/ Screened ou Foiled Unshielded Twisted Pair	Complementa os UTP com uma blindagem comum a todos os pares			
S/FTP	Shielded and Foiled Twisted Pair	Complementa o FTP com uma blindagem comum a todos os pares.			

CATEGORIAS DE CABOS DE PARES ENTRANÇADOS

Cablagens de cobre

Cat	Largura de Banda	Utilização e débitos	Observações		
1	Não especificado	Telefone	Designados por TVHV		
2	1 MHz	Em desuso	Fora das especificações das normas		
3	16 Mhz	Em desuso			
4	20 MHz	Em desuso			
5	100 MHz	Até 100 Mbps			
5e	100 MHz	Até 1Gbps			
6	200 MHz	Até 10Gbps mas só 55 mts	Recomendação mínima atual		
6A	500 MHz	Até 10 Gbps	Em grande expansão.		
7	600 MHz	10 Gbps a 100 mts	Só Shielded (p.e. S/FTP); Conetores		
7A	1000 MHz	40 Gbps a 50 mts	GG45		

EQUIPAMENTOS PASSIVOS: MEIOS FÍSICOS DE TRANSMISSÃO


- Condutores em fibra ótica
 - Sinais em forma de luz gerado por um emissor, tipicamente um LED *Light Emitting Diode* ou um Laser;
 - O recetor é um foto-díodo ou foto-transistor
 - Constituídos por:
 - Núcleo em vidro, extremamente fino;
 - Bainha também em vidro mas com índice de refração inferior que faz com que o sinal de luz seja refletido para o interior
 - Revestimento protetor
 - Imunes a interferências eletromagnéticas
 - Capacidades de transmissão máxima ainda não atingidas (<u>máximo registo</u> atingido: 661 Tbps) devido a limitação dos transmissores/recetores.

EQUIPAMENTOS PASSIVOS: MEIOS FÍSICOS DE TRANSMISSÃO

- Condutores em fibra ótica
 - Cabos Multimodo
 - Núcleo maior (>50 μm): O sinal viaja por múltiplos feixes, dispersando-se. Por isso, o débito e distância alcançados são menores;
 - Cabos Monomodo
 - Núcleo menor (3 a 10 μm): Sinal só tem um percurso possível
 - Alcança maiores distâncias (dezenas de Km) e débitos (já se obtiveram centenas de Gbps)
 - A maior dificuldade é o manuseamento dos fios de vidro.
 - São utilizadas nas LAN's para distribuição entre bastidores

MEIOS FÍSICOS DE TRANSMISSÃO

• Fibras óticas (exemplos de aplicação):

Tipo de Fibra	Aplicação	Comprimento máx.	
FO Multimodo 62,5/125μm (OM 1)	Ethernet 1000-base-SX	275mt	
FO Multimodo 50/125µm (OM 2)	Ethernet 1000-base-SX	550mt	
FO Multimodo 50/125μm LASER (OM 3)	Ethernet 1000-base-SX	800mt	
FO OM1, 2 ou 3	Ethernet 100-base-FX	2000mt	
FO Monomodo 8/125μm (OS 1)	Ethernet 1000-base-LX	5000mt	
FO Monomodo 8/125μm (OS 1)	Ethernet 10G-base-LX4	10000mt (4 pares)	
FO Monomodo 8/125μm (OS 2)*		Dobro do OS1	

^{*} Feita com um tipo de vidro melhorado

- Equipamento Layer 1
- Limita-se a repetir a trama recebida numa porta para todas as portas;
- Todas as portas no mesmo domínio de colisão
- Largura de banda partilhada por todas as portas
- Half duplex
- Em desuso! Não são permitidos em novas redes certificadas!

- Switch (Comutador)
 - Equipamento Layer 2
 - Concentrador mais utilizado em LAN Ethernet
 - Capacidade de aprender os MAC Address dos equipamentos ligados a cada porta!
 - Se não souber o MAC de destino envia para todas as portas
 - Full Duplex
 - Débito garantido em cada porta
 - Podem ter funções de encaminhamento Layer 3 (Routing)

Switch (Comutador)

- Os switchs têm a capacidade de aprender e guardar os endereços MAC que estão ligados a cada porta numa Tabela de endereços MAC (MAC Table Address)
- Assim, conseguem saber para onde encaminhar as tramas consultando o campo DA.
- A trama não é encaminhada para as outras portas poupando assim recursos e permitindo que as outras máquinas possam estar a enviar ou receber dados
- Várias comunicações em simultâneo
- Velocidade da porta está disponível para cada host!
- Diz-se que os Switches permitem a segmentação da LAN em vários domínios de colisão, uma por cada porta.

- Switch (Comutador) parâmetros principais na escolha:
 - Número tipo de portas;
 - Tecnologias Ethernet suportadas;
 - Capacidade de processamento;
 - Gestão de VLAN's (obrigatório hoje em dia);
 - PoE (Power Over Ethernet)?
 - Funcionalidades Layer 3 (Routing)?
 - Qualidade de Serviço;
 - Módulos de Fibra?

Router (Encaminhador)

- Interliga redes distintas. Equipamento L3.
- Tratam endereços IP!
- Tem de ter pelo menos duas interfaces de rede.
- Cada uma das interfaces liga-se a uma rede diferente.
- Tal como num PC, o Router tem de ser programado com um endereço IP em cada interface de Rede e um protocolo de Routing.
- Automaticamente o router consegue encaminhar pacotes IP entre as redes que estão diretamente a ele ligadas – basta configurar os respetivos endereços IP em cada interface.

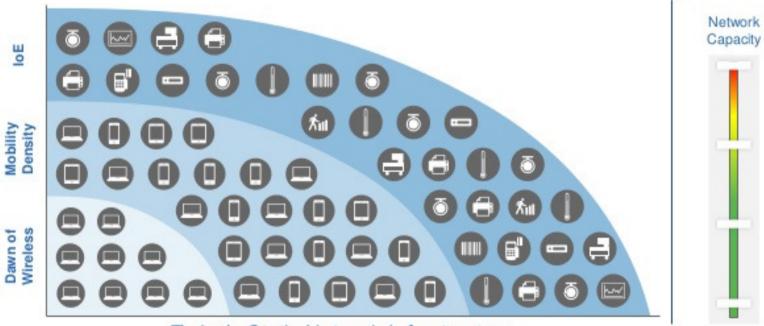
Router

- Se quisermos que encaminhe pacotes para redes remotas (que não estejam não ligadas a ele diretamente) temos de configurar as rotas, tal como num PC, indicando a rede de destino e o gateway (outro Router) para essa rede.
- Os routers também têm forma de conhecer rotas automaticamente através de troca de informação com os outros routers via Protocolos de Routing (OSPF, RIP, EIGP, etc.)
- Também pode ser configurado com uma rota por defeito (Default Route) através de um default gateway.

ETHERNET

- Variantes (Evolução)
 - Ethernet (10 Mbps)
 - Fast Ethernet (100 Mbps)
 - Gigabit Ethernet (1 Gbps)
 - 10 Gigabit Ethernet (10 Gbps)
 - 100 Gigabit Ethernet (100 Gbps)
 - 400 Gigabit Ethernet (400 Gbps)
- Nomenclatura: XXX-base-YY
 - XXX representa o débito
 - "base" significa que não se usa modulação
 - YY representa o tipo de meio físico

RESUMO


- Redes Locais (LAN)
- Redes com fios:
 - Ethernet e suas variantes
 - Tipos de Cablagem
 - Equipamentos de comutação
- Redes Sem Fios
- Qos em Redes LAN

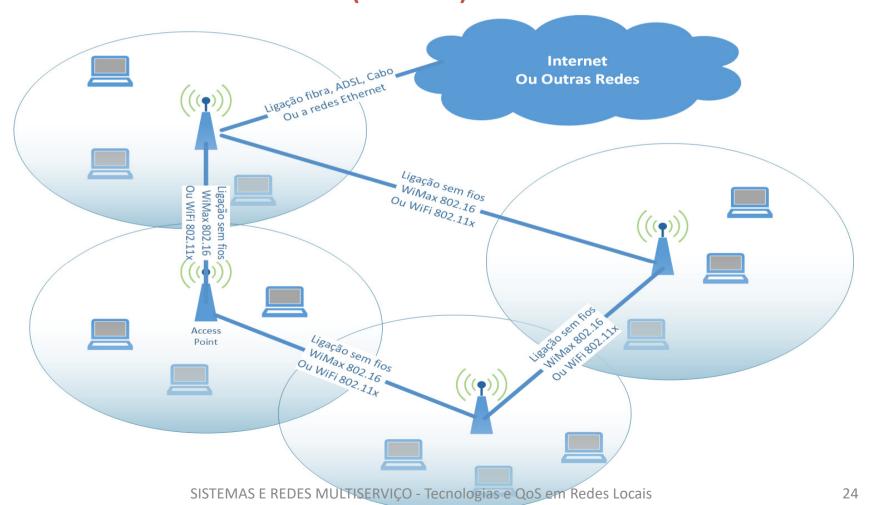
- Definidas nas normas 802.11x
- Meio físico de transmissão é o ar (enquanto que nas LAN's Ethernet é o cabo UTP).
- Todas as redes Wi-Fi estão identificadas por um SSID – Nome que surge quando pesquisamos redes.
- Duas questões práticas fundamentais:
 - Desempenho: Na área de cada AP, apenas uma máquina pode estar a emitir num determinado momento (o AP funciona com um hub half-duplex)
 - Segurança: Todos os pacotes são visíveis por todas as máquinas registas nesse AP!

Do You Know Which Devices Really Impact the Network?

Today's Static Network Infrastructure

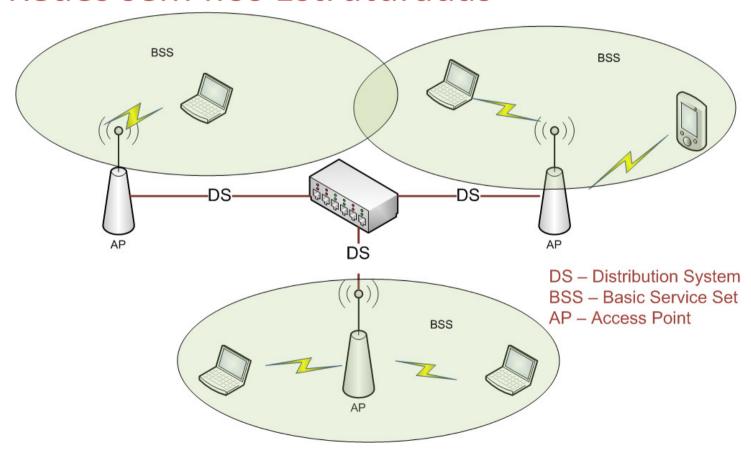
Fonte: Cisco "Preparing-your-network-for-wave-2-of-80211ac/3"

ARQUITETURA DAS REDES SEM FIOS


As redes wireless podem funcionar em dois modos:

- Em Malha (Mesh) a interligação entre os Access
 Point (AP) é feita sem fios;
 - útil para cobertura em espaços abertos públicos (p.e.) centros urbanos;
- Estruturada ou Com Ponto de acesso: os Access
 Point (AP) ligam à rede cablada.
 - Tipicamente cada AP liga a um Switch;
 - Utilizada em redes indoor ou como complemento a redes com fios

ARQUITETURA DAS REDES SEM FIOS



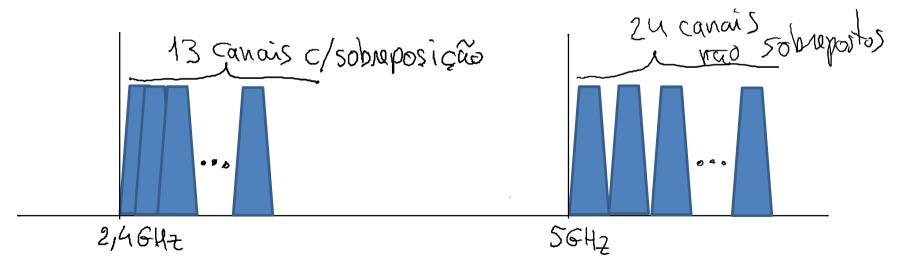
Redes em Malha (Mesh)

ARQUITETURA DAS REDES SEM**stio**FIOS

Redes sem fios Estruturadas

EQUIPAMENTOS ATIVOS

Access Point



- Ligação entre os utilizadores e a rede
- Enviam sinais para os utilizadores através do espaço livre
- Largura de banda partilhada entre utilizadores
- São construídos para operarem em uma ou mais normas de redes sem fios
- Podem ser alimentados por transformador ligado diretamente a uma tomada elétrica ou pelo cabo de rede (PoE – Power over Ethernet)
- Há AP´s de interior ou exterior
- Possibilidade de gestão da potência emitida

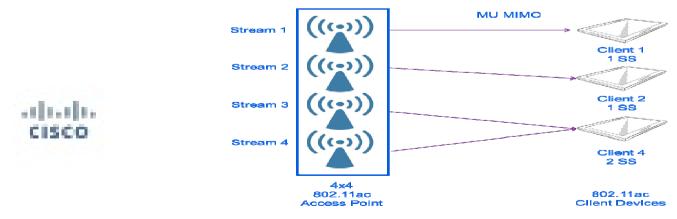
Astio

REDES SEM FIOS

- Alguns conceitos importantes:
 - Diferença entre "Frequência" e "Canal":
 - As redes wifi operam nas frequências de 2,4GHz e 5GHz;
 - A comunicação não ocupa toda a frequência mas uma pequena porção (canal) perto dessas frequências com cerca de 20MHz;

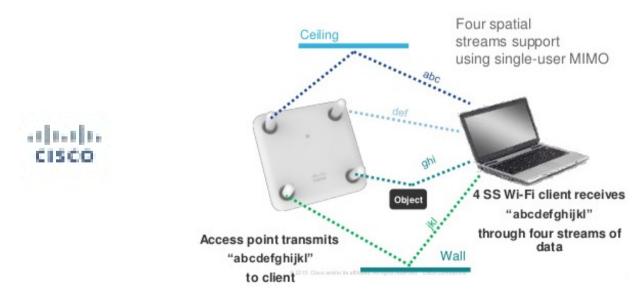
Normas 802.11

Norma	Ano	Débito máximos	Alcance típico (outdoor)	Alcance típico (indoor)	Frequência	Largura de Banda
а	1999	54 Mbps	130 mt	35 mt	5 GHz	22 MHz
b	1999	11 Mbps	120 mt	35 mt	2,4 GHz	21 MHz
g	2003	54 Mbps	120 mt	70 mt	2,4 GHz	23 MHz
n	2007	600 Mbps	250 mt	70 Mt	2,4 e 5GHz	24 e 40 MHz
ac (wave 1)	2013	1,3 Gbps	300 mt	70 mt	5 GHz	20, 40 e 80 MHz
ac (wave 2)	2015	6,93 Gbps	300 mt	70 mt	5 GHz	20, 40, 80 e 160MHz
ax (WiFi 6)	2019	10 Gbps	?	?	2,4 e 5GHz	20, 40, 80 e 160MH


Norma 802.11ac

- Já em produção/instalação Está a ser adotada a um ritmo maior do que foi o caso da 802.11n!
- Velocidades máximas atingíveis: 1,3Gb (wave 1) e 3,5Gb (wave 2)
- Estas velocidades são conseguidas com novas técnicas de modulação 4 vezes superiores à 802.11n e maior número de canais agregados (até 4 canais -80Mhz ou 8 canais 160 Mhz).
 - Ter cuidado com isto -> se houver uma interferência num dos canais agregados, toda a transmissão fica inutilizada!
- Só utiliza frequência de 5 GHz (cuidado com a compatibilidade dos dispositivos)
- Mais rápida (teórica até 6,9Gb) o que leva a menor consumo de energia

Norma 802.11ac wave 2 – Características dos AP's


 Multi-User MIMO (MU-MIMO): cada AP tem vários transmissores (máx. 4) que atuam independentemente – cada um pode fazer download com um cliente diferente –> até 4 comunicações simultâneas;

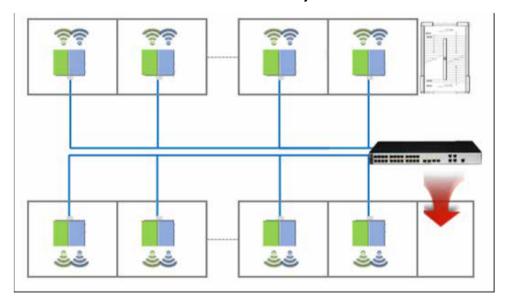
Norma 802.11ac wave 2 – Características dos AP's

- Spatial streams
 - Característica dos AP´s que permite dividir a informação e enviar cada bloco por diferentes caminhos ao mesmo tempo (Single User MIMO) -> envio mais rápido!
 - Ainda não se conseguiu mais de 4 Spatial Streams

Norma 802.11ac wave 2 - Características dos AP's

- Beam Forming
 - Capacidade de os AP´s poderem "focar" o sinal na direção do utilizador.

ARQUITETURA DAS REDES SEM FIOS STIO


- A utilização de AP's com norma 802.11n ou 802.11ac têm implicação no desenho de uma rede:
 - O AP deve ser ligado a uma porta Gigabit ou 10Gigabit do switch
 - Maior cuidado no estudo da interferências entre células
 - Maiores exigências no planeamento da localização dos AP's (deverá sempre existir um *site-survey* prévio)
 - Em situações de múltiplos AP´s com muitos utilizadores a utilização de uma controladora é aconselhável (ver slide seguinte)
 - Estas normas podem representar uma opção válida para a construção de uma WLAN em vez de uma LAN em Ethernet.

ARQUITETURA DAS REDES SEM FIOS STIO

Exemplo de utilização de uma controladora*

(imagem retirada de um documento da Huawei):

*Equipamento que é capaz de gerir os vários AP´s de uma LAN de forma dinâmica e automática com o objetivo de minimizar as interferências por utilização ótima de canais e variação de potência emitida. Pode também gerir e autenticar todos os utilizadores, fazer gestão de SSID/VLAN, alimentar com PoE os AP's, etc.

Futuro das REDES SEM FIOS STIO

Norma IEEE 802.11ax – WiFi 6

- Certificação disponível desde 16 de Setembro de 2019
- Foco em melhorias:
 - Maior débito (até 10Gb)
 - Utiliza as bandas de 2,4GhZ ou 5GHz

- Ambientes de alta densidade (p.e. Estádios)
- periodos de Menor bateria consumo com de "adormecimento" (importante para IoT)
- Download MU-MIMO até 8 utilizadores
- Divisão do espectro em bandas mais estreitas para dar serviço a aplicações específicas (p.e. VoIP ou IoT)

ARQUITETURA DAS REDES SEM FIOS

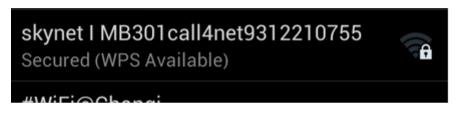
Comparação Ethernet vs WiFi:

- A performance de uma rede Ethernet comutada (ou seja com switchs e cabos UTP) garante a cada utilizador uma largura de banda de 10 ou 100Mb ou mesmo 1 Gb.
- Nas redes wireless, a velocidade é partilhada pelos utilizadores de cada AP (só um utilizador em cada AP pode estar a emitir dados).
- O desempenho poderá ser melhor ou pior que numa rede Ethernet consoante o número de utilizadores e a carga induzida na rede por cada um deles.

SEGURANÇA EM REDES SEM FIOS

- Numa rede sem fios o problema da segurança é acrescido pelo facto de que qualquer dispositivo equipado com esta tecnologia pode aceder ao sinal emitido pelos Access Points. Há quatro problemas fundamentais:
 - Autenticação entre a estação e a rede;
 - O controlo de acesso da estação;
 - A confidencialidade dos dados trocados através de encriptação;
 - A integridade dos dados trocados.

SEGURANÇA EM REDES SEM FIOS


Alguns mecanismos básicos de segurança:

- Ocultar o SSID o AP não emite este parâmetro obrigando as estações a conhecê-lo previamente. No entanto esta segurança é muito fraca: basta o intruso abrir pacotes de controlo enviados pelo AP a outras estações.
- Autenticação por endereço MAC: um AP pode ser configurado para apenas aceitar pedidos de máquinas que constem numa listagem de MACs permitidos. Este mecanismo pode ser "desmontado" caso o intruso saiba um MAC válido e forje este endereço.

SEGURANÇA EM REDES SEM FIOS

Cuidado com o Wi-Fi Protected Setup (WPS)

- O WPS foi criado para simplificar o processo de autenticação de uma estação junto do AP;
- Método push button ou PBC- permite a configuração automática de uma estação pressionando um botão do Router;
- Basta o intruso ter acesso físico ao router e pressionar o botão WPS do Router para ser feita a configuração da estação.

SEGURANÇA EM REDES SEM FIOS

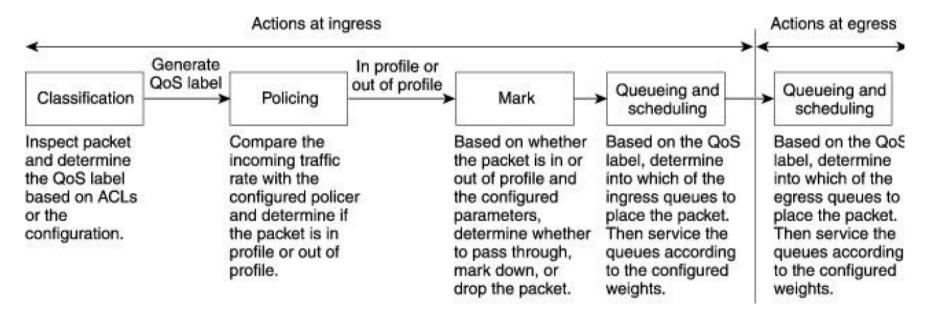
Dadas as limitações anteriores foram desenvolvidos métodos e protocolos específicos para segurança nas redes wireless:

- Desde 1999 a norma 802.11 incluía um mecanismo de segurança denominado Wireless Equivalent Privacy ou WEP:
 - Permite a autenticação das estações junto dos AP´s;
 - Permite a confidencialidade e integridade dos dados entre as estações e os AP's;
- O WEP é bastante vulnerável e por isso surgiu o WPA (Wi-Fi Protected Access) que baseado no WEP melhorou alguns aspectos de segurança sucedido pelo WPA2 ou 802.11i.

SEGURANÇA EM REDES SEM **\$\lambda\$** stio **FIOS**

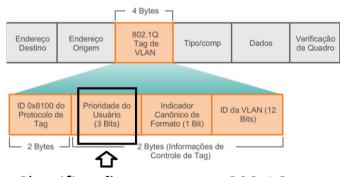
Norma	Ano	Autenticação	Comentários
WEP	1999	Aberta ou Chave partilhada (PSK)	Obsoleta. Facilmente quebrável. A chave de encriptação de um utilizador é sempre a mesma.
WPA	2003	Chave partilhada (PSK) ou servidor RADIUS	TKIP – Cada trama tem uma chave de codificação diferente. Autenticação dos AP´s. Ultrapassada.
WPA2-PSK	2004	Chave Partilhada (PSK)	Para ambientes com poucas exigências de segurança. Utilizadores partilham a mesma chave
WPA2 Enterprise		Servidor de RADIUS ou Diameter	Cada utilizador tem uma chave própria. Requer um servidor para autenticação. Para ambientes empresariais.
WPA3	2018	WPA2 + processo totalmente encriptado	Em fase de implementação. Chaves mais robustas. Proteção contra ataques "dicionário".

RESUMO

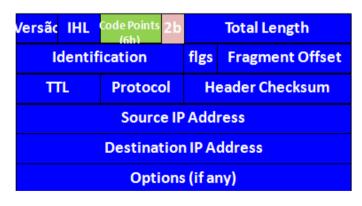

- Redes Locais (LAN)
- Redes com fios:
 - Ethernet e suas variantes
 - Tipos de Cablagem
 - Equipamentos de comutação
- Redes Sem Fios
- Qos em Redes LAN

- Processo segue a arquitetura DiffServ e as etapas definidas no Capítulo 1:
 - 1. Classificação, de preferência com DSCP;
 - Marcação, policiamento cada switch controla o tráfego na sua entrada e Mecanismos de descarte para os pacotes não conformes e que não fiquem retidos;
 - 3. Colocação em filas e Algoritmos de escalonamento em cada switch ou router é dado um tratamento diferente a cada classe de serviço. Cada switch atua de forma independente (*Per Hop Behaviour*)

 Sequência de ações de Qos num Switch Cisco, nas portas de entrada (Ingress) e saída (Egress):


Fonte:

Catalyst 2960 and 2960-S Software Configuration Guide, 12,2(55)SE - Configuring QoS [Cisco Catalyst 2960 Series Switches] - Cisco



Classificação:

- Pode ser feita na fonte (PC ou servidor) através da atribuição de um DSCP por aplicação;
- Nas tramas 802.1Q pode-se utilizar os
 3 bits mais significativos do TAG
 Control para diferenciar tráfego;
- Nos pacotes IP, utiliza-se 6 bits do antigo campo ToS para definir um DSCP.
- Pode também utilizar como critério o MAC Address com Access Control Lists;
- Métodos automáticos de deteção de aplicações (exemplo: NBAR).

Classificação em tramas 802.1Q

Classificação nos pacotes IP

- Policiamento e marcação (feito à entrada de um switch ou Router):
 - Em cada porta, pode-se limitar o débito por cada classe de tráfego ou de forma agregada para todas as classes;
 - Um pacote não conforme pode ser descartado ou marcado, ou seja, é gerado um novo valor de DSCP.
 - Nos switchs Cisco é utilizado o algoritmo Token Bucket. Gerimos o tamanho do balde e o ritmo dos tokens.

Descarte de pacotes:

- Nos switchs Cisco um dos métodos é o Weighted Tail Drop (WTD), uma variante do Tail Drop, em que os pacotes são descartados do final das filas mas de forma diferente para cada fila:
 - Para cada Classe de Serviço (fila) é definida a percentagem do tamanho máximo da fila a partir da qual os pacotes são descartados.

- Algoritmos de escalonamento:
 - Nos switchs Cisco é utilizado o SRR nas variantes Shaped ou Shared:
 - Nas filas de ingress (entrada) apenas o shared
 - Nas filas de egress (saída) pode ser aplicado o shared ou o shaped
 - Permite também a utilização do PQ (tipicamente para prioritizar VoIP) mas com limite à largura de banda ocupada por esta fila.

TECNOLOGIAS DE REDES LOCAIS

DÚVIDAS?