

SISTEMAS E REDES MULTISERVIÇO

Capítulo 5 – Arquiteturas de Data Center, Monitorização e avaliação de desempenho

Resumo do Capítulo **stio

- Arquiteturas de Data Center
 - Caracterização
 - Servidores
 - Storage
 - SAN
 - HCI
- Avaliação e Disponibilidade de Redes
- Monitorização

Data Center

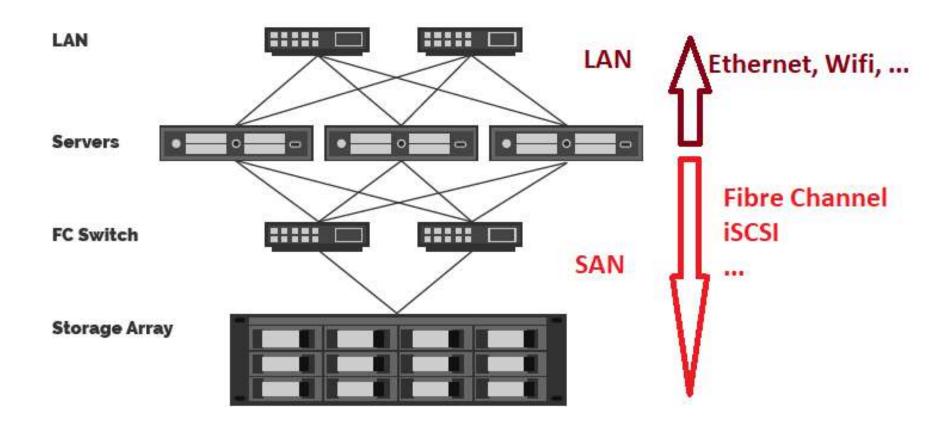
- Recurso constituído por computadores e armazenamento em rede para gerir, processar, armazenar e disseminar grandes quantidades de dados.
- Constituído por
 - Capacidade de processamento e memória para criar servidores
 - Capacidade de armazenamento (Storage)
 - Infraestruturas edifício, energia, climatização, rede de dados, bastidores, cabos, etc
 - Software de gestão

Evolução no Data Center 🚜 stio

Anos 90

- Um servidor físico para cada aplicação com storage dedicada
- Muito espaço físico e consumo de energia!
- Capacidades dos servidores subaproveitadas

Anos 00


- Partilha de recursos de computação (por Virtualização) e storage - redução da necessidade de hardware
- SAN Strorage Area Network para ligação dos servidores ao storage partilhado

Tendência atual

- Rapidez, disponibilidade, capacidade e economia
- Hiperconvergência trocar a SAN por sistemas integrados de computação e storage
- Software Defined Data Center

Arquitetura Típica

- Servidores Computadores com elevadas capacidade de processamento e memória adequados para:
 - Alojar aplicações
 - Gerir Ficheiros
 - Processar dados
- Podem ser
 - Rack
 - Blades
 - Mainframes

Servidores em Rack

- Vantagens:
 - Montado em bastidores
 - Fácil acomodação
 - Equipamentos standard (independência de fabricantes)
- Dificuldades:
 - Cablagem independente para energia, rede e ligação ao storage

Servidores em Blades

- Vantagens
 - Componente modular que encaixa num chassis
 - A alimentação de energia e ligação à rede e ao storage é comum a todos os servidores no mesmo chassis

Maior capacidade do que os servidores em Rack com

menor espaço ocupado

Dificuldades

- Chassis proprietário –
 todos servidores (blades) do mesmo fabricante
- Mais caro do que em rack

- Servidores Mainframe
 - Equipamentos dedicados de alta performance
 - Extremamento poderosos
 - Exemplo: IBM com 12 milhoes de transações encriptadas por dia

Dificuldades

- Muito caros
- Podem ocupar muito espaço

Dimensionamento de servidores

• Devem ser adequados a garantir a prestação do serviço sem falhas ou atrasos.

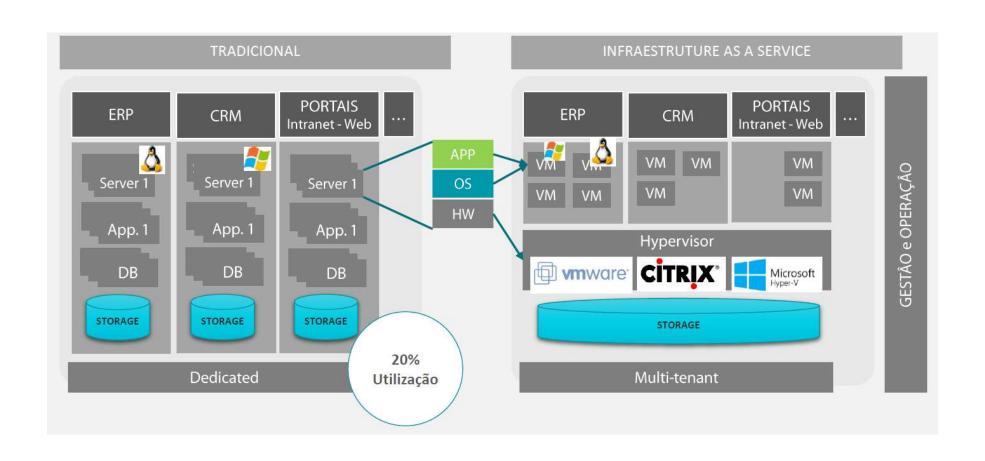
– Hardware:

- CPU quantidade, tipo e velocidade;
- Memória Cache, RAM, Flash;
- Storage SSD, HDD; RAID; ...

– Software:

- Sistema Operativo;
- Software aplicacional de suporte ao serviço.

Dimensionamento de servidores


 No dimensionamento deve ser considerado o tipo de serviço e a carga expetável, nomeadamente tipificando o consumo por cada cliente ligado e o máximo de clientes ligados previstos.

Atualmente, não existe um servidor físico para cada aplicação. Com a Virtualização, são criados e geridos servidores em máquinas virtuais em recursos partilhados de computação e storage.

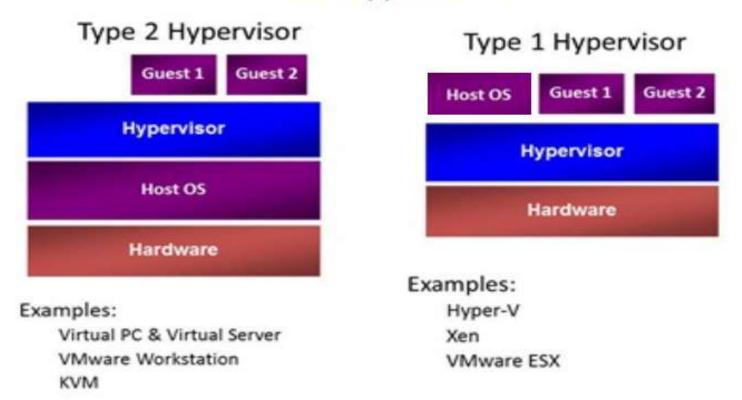
- Tecnologia que permite criar uma plataforma de hardware através de um componente de software
 - O software cria uma máquina virtual que emula um computador onde é possível instalar um sistema operativo.
 - Maior facilidade na gestão de máquinas para alterações, backups, mobilidade, etc...
 - Tecnologia fundamental para o Cloud Computing (MAS NÃO É A MESMA COISA!) pois permite partilhar uma plataforma informática em pedaços independentes que podem ser geridos por diferentes entidades

Componentes de virtualização

- Hardware físico de suporte (host ou hospedeiro)
 - Limita a capacidade computacional das máquinas virtuais que suporta;
 - Responsável pelas interfaces reais de ligação à rede;

Hypervisor

- Camada de software que atua entre o hardware e o Sistema Operativo que emula as máquinas virtuais com recurso à partilha dos recursos do hospedeiro;
- Faz a gestão dos recursos do host e a sua atribuição às Máquinas Virtuais;
- Pode gerir os recursos de várias máquinas físicas (exemplo: storage virtualization);


Máquinas Virtuais

Sistemas independentes que atuam como um computador

Hypervisor Design:

Two approaches

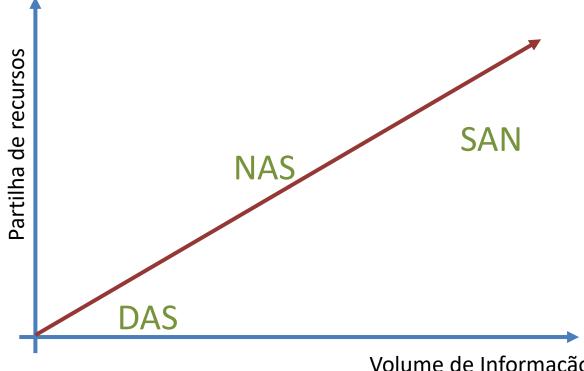
- Vantagens da virtualização de máquinas
 - Melhor aproveitamento dos recursos
 - Maior rapidez na criação de computadores ou servidores
 - Possibilidade de tratar um computador ou servidor como um ficheiro que se pode transportar facilmente
 - Mais facilidade para criar backups e arquiteturas de Disaster Recovery
 - Poupança de energia fundamental!

Storage – Tipos de disco stio

- Avaliados pela capacidade, latência (tempo que demora a iniciar uma tarefa) número de operações de leitura/escrita (IOPS) e velocidade de transferência dos dados
- Durante muitos anos, discos mecânicos (HDD)
 - A velocidade é limitada pela rotação do disco um bom disco atinge 200 a 400 IOPS
 - A latência também é afetada pela natureza mecânica do acesso aos dados - na ordem dos milissegundos
 - Discos SAS (Serial Attached SCSI) e SATA (Serial Advanced Technology Attachment)

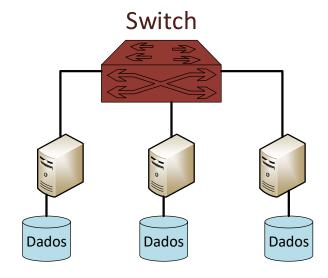
Storage – Tipos de disco **astio**

- Tipos de disco para Storage
 - Recentemente, discos Solid State Drive SSD
 - Não há componentes mecânicos informação guardada em memória não volátil (chips de memória)
 - Menor latência (na ordem dos microssegundos)
 - Mais IOPS (pode atingir mais de 100.000 IOPS)
 - Menor consumo energético
 - Menos propenso a avarias
 - Mais caro mas em processo de redução!
 - Por enquanto, discos de menores capacidades


Storage

• Como gerir o armazenamento de dados (storage)?

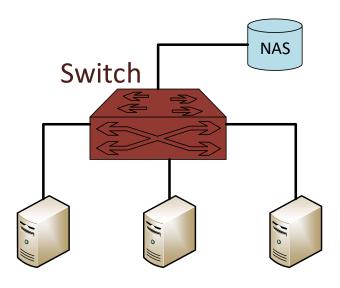
- NAS
- SAN


Volume de Informação

Storage

DAS – Direct Attached Storage

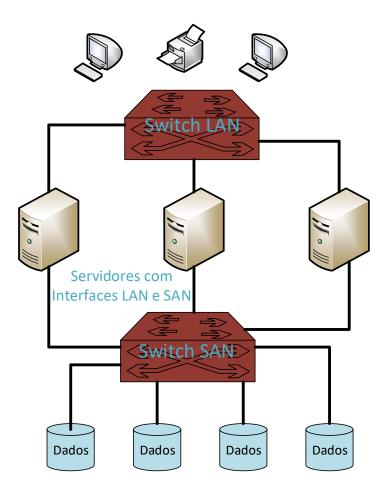
- A unidade de armazenamento está ligada diretamente ao sistema (p.e. servidor) que a usa sem passar pela rede;
- Método tradicional usado quando a capacidade de disco de um servidor era ultrapassada;
- Solução para baixas necessidades de volume em que não é necessário partilhar o storage;
- O armazenamento só é utilizado pelo servidor a que está ligado



Storage

NAS – Network Attached Storage

- A unidade de armazenamento está ligada à LAN;
- É ligada via TCP/IP, como qualquer dispositivo de rede, e tipicamente configurada por Web Browser;
- A informação é acedida por File Share (p.e. NFS – Network File System) e pode funcionar p.e. como servidor multimédia;
- Método mais comum em pequenas empresas;
- Qualquer sistema da rede pode aceder à informação inclusive ao mesmo tempo.



SAN –Storage Area Networks **Astio**

SAN – Storage Area Network

- Tecnologia, baseada em Switchs, que interliga múltiplos Servidores Físicos, Máquinas Virtuais sistemas de armazenamento dados (storage), tipicamente em DataCenters;
- Existe uma rede própria para ligar servidores e storage, que não tem as mesmas regras da LAN; - evita que o congestionamento da LAN afete os servidores;
- Exige investimento financeiro e capacidade de a gerir;
- Há diferentes tecnologias.

SAN – Storage Area Network stio

- Tecnologias de rede Dominantes
 - Fibre Channel
 - Tecnologia mais antiga nas SANs
 - Funcionamento distinto da Ethernet/IP
 - Protocolos específicos para transporte de SCSI
 - Interface física com Host Bus Adapter (HBA)
 - Maiores débitos mas maior complexidade e custo
 - Exige equipamentos próprios (switchs, interfaces de rede dos servidores e unidades de storage)
 - Débitos múltiplos de 4Gb (típico 8, 16 ou 32Gbps; máx atual 128Gbps, roadmap para 512Gb)

SAN – Storage Area Network stio

- Tecnologias Dominantes
 - iSCSI Small Computer Systems Interface (SCSI) over IP

- Tecnologia SAN desenvolvida para ligar as interfaces SCSI (maioria do storage) em Ethernet/IP
 - Protocolo SCSI encapsulado em TCP/IP
- A conectividade é fornecida através de adaptadores de barramento de host iSCSI (HBAs);
- Já tem débitos semelhantes à FC mas com menores. custos
- Débitos típicos de 1Gb e 10Gb; máximo 100Gbps, roadmap para 400Gb

SAN – Storage Area Network stio

Tecnologias Dominantes

- Fibre Channel over Ethernet (FCoE)
 - Evolução das redes Fibre Channel para encapsular os pacotes FC em tramas Ethernet para poderem ser trabalhados por Switchs e Routers mais baratos;
 - Exige adaptadores de rede convergentes (CNA) que passam tramas Ethenet ou FCoE
 - Está a ter bastante sucesso por adicionar as vantagens do FC com os custos de equipamentos Ethernet

Evolução - HCI

- Hyperconverged infrastructure (HCI)
 - O SSD está a alterar a arquitetura do Data Center. É mais rápido ter o storage acedido diretamente do que através de uma SAN...
 - As várias componentes (processamento, storage, ligação à rede) ficam assembladas no mesmo rack (nó)!
 - Escalabilidade acrescentando mais nós.
 - A solução HCI inclui o bastidor, as cablagens pré-feitas, os nós e, muito importante, o software de gestão que inclui o Hypervisor e a capacidade de gerir por software todo o hardware de forma integral e partilhado (Software Defined DataCenter).

Evolução - HCI

- Software Defined DataCenter
 - O software faz a abstração do hardware;
 - Permite a criação e configuração de recursos de forma automática (automação)
 - p.e. Configuração automática de uma estação padrão
 - Simplifica os processos para o utilizador

Resumo do Capítulo

- Arquiteturas de Data Center
- Avaliação e Disponibilidade de Redes
 - Avaliação de desempenho
 - Business Continuity Plan (BCP)
 - Disaster Recovery (DR)
 - Alta Disponibilidade
 - Redundâncias
 - Balanceamento de Carga
- Monitorização

Avaliação de Desempenho astio

- As redes e sistemas de computadores podem ser avaliadas por:
 - Débito das ligações
 - Taxa de perda de pacotes
 - Atraso e variação do atraso
 - Tempo de resposta aos pedidos das aplicações -> implicações no dimensionamento de servidores
 - Disponibilidade (tempo de uptime vs tempo de downtime)

AVALIAÇÃO DE DESEMPENHO stio

 Disponibilidade – medida de avaliação de redes ou sistemas que leva em conta o tempo que os serviços estiveram disponíveis.

Disponibilidade (%)	<i>Downtime</i> /ano	Downtime/mês
95%	18 dias 6:00:00	1 dias 12:00:00
96%	14 dias 14:24:00	1 dias 4:48:00
97%	10 dias 22:48:00	0 dias 21:36:00
98%	7 dias 7:12:00	0 dias 14:24:00
99%	3 dias 15:36:00	0 dias 7:12:00
99,9%	0 dias 8:45:35.99	0 dias 0:43:11.99
99,99%	0 dias 0:52:33.60	0 dias 0:04:19.20
99,999%	0 dias 0:05:15.36	0 dias 0:00:25.92

• TEMPO É DINHEIRO!

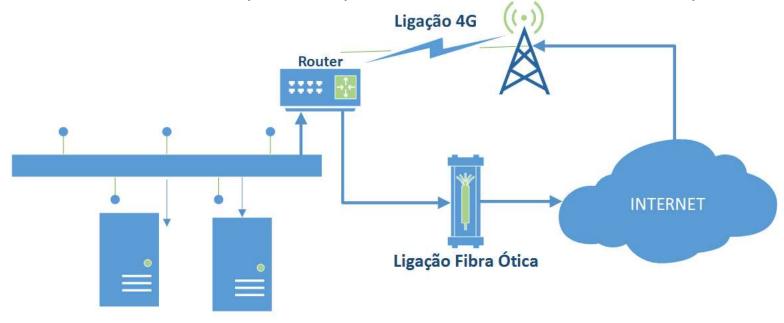
Avaliação de Desempenho astio

- Para obter maior Disponibilidade -> maior investimento em hardware e software!
- Tipicamente as organizações procuram um compromisso entre a taxa de disponibilidade e o custo das soluções.
- Dois parâmetros relacionados:
 - MTBF Tempo médio entre falhas
 - MTTR Tempo médio da reparação a falhas
- Disponibilidade = MTBF / (MTBF + MTTR)

Disponibilidade de Serviços 🚵 stio

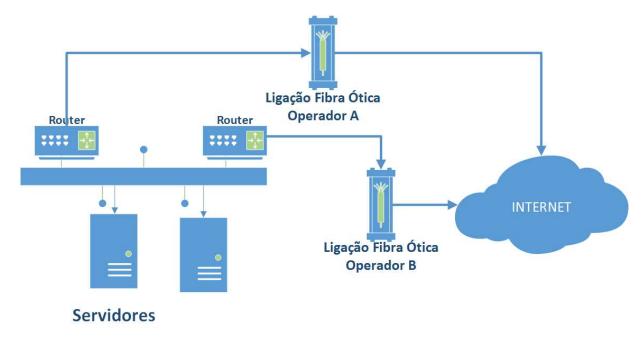
- Quando um serviço é crítico, exigindo uma elevada disponibilidade, recorre-se a sistemas de Alta Disponibilidade:
 - Soluções redundantes que incluem sistemas alternativos que asseguram o funcionamento do serviço quando o sistema principal falha.
 - Envolve Hardware, Software, Energia e Segurança (mesmo a física).

Disponibilidade de Serviços 🚵 stio



- Alta Disponibilidade envolve:
 - Manter a Energia disponível
 - UPS podem ser *on-line* (a energia está constantemente a alimentá-las e são elas que produzem a energia interna e a suportam em caso de falha) e as off-line (apenas atuam quando a energia falha);
 - Traçados de energia elétrica redundantes e caminhos distintos;
 - Geradores alternativos p.e. geradores a gasóleo.

Disponibilidade de Serviços 🖀 stio

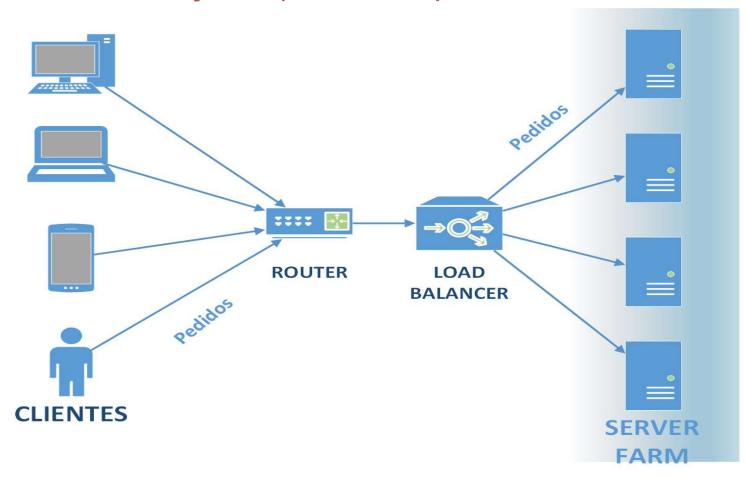

- Alta Disponibilidade envolve:
 - Manter as Redes LAN e WAN disponíveis
 - LAN com caminhos redundantes;
 - Ligação à Internet duplicada por outro operador e/ou tecnologia (p.e. Fibra e 4G);
 - No mesmo operador, pode haver redundância de IP´s públicos.

Disponibilidade de Serviços 3 stio

- Alta Disponibilidade envolve:
 - Manter as Redes LAN e WAN disponíveis
 - Sistemas mais redundantes com duplicação de Routers, caminhos alternativos e operadores:
 - No mesmo operador, pode haver redundância de IP's públicos.

Disponibilidade de Serviços 🏊 stio

- Alta Disponibilidade envolve:
 - Garantir disponibilidade nos Servidores
 - Duplicação dos equipamentos, em diferentes locais e ligados por acessos redundantes;
 - Peças redundantes (motherboard, fonte de alimentação, discos, etc.);
 - Garantir a disponibilidade da Informação
 - Backups, Backups e mais Backups de preferência fora do edifício onde está o equipamento principal, p.e. em Cloud;
 - Celebrar Service Level Agreement (SLA) com fornecedores
 - Contrato que defina claramente o tempo de resposta às várias possíveis falhas!


- Quando um serviço é apenas assegurado por um servidor, este torna-se um "Single point of failure":
 - Se falha, todo o serviço falha!
 - Solução: dimensionar servidores múltiplos e fazer Balanceamento de carga — repartir o serviço prestado por um conjunto de servidores para maximizar o desempenho e garantir redundância em caso de falha.
 - Serviço fundamental em prestadores de serviços de Data Centers.

- A implementação pode ser feita:
 - Soluções comerciais proprietárias:
 - Exemplo: Windows Load Balancing Service (WLBS), Network Load Balancing (NLB) ou Component Load Balancing (CLB) da Microsoft.
 - Construir uma farm (ou cluster) de servidores dois ou mais servidores que atuam como se fossem um só com a intervenção de um balanceador de carga que distribui o trabalho.
 - Cada servidor tem de ser capaz de aceder ao(s) disco(s) do(s) outro(s);

Construir uma farm (ou cluster) de servidores

- No sistema de farm, o balanceamento de carga divide o trabalho entre os servidores da forma mais uniforme possível para otimizar o desempenho e evitar congestionamentos.
 - Método básico: selecionar de forma aleatória, sequencial ou outra, o servidor a tratar cada pedido; O servidor encaminha cada pedido alternadamente para um dos servidores.

- Métodos Estáticos: o balanceador não conhece o estado atual dos servidores, apenas a sua capacidade, e atribui os pedidos aos servidores com base nessa informação;
 - Aplicável em pequenos DataCenters;
 - Exemplos: Round-Robin, Threshold Algorithm, etc.
- Métodos Dinâmicos: o balanceador regista o número de ligações já encaminhadas e ainda ativas para cada servidor e escolhe o que tiver menos carga no momento.
 - Mais complexo mas mais eficiente em grandes DataCenters.
 - Exemplo: Least-Connect

- Exemplos de Appliances de Balanceamento de Carga:
 - F5 (https://www.f5.com/solutions/traffic-management/load-balancing)
 - Citrix NetScaler

https://www.citrix.com/blogs/2018/06/11/load-balancing-citrix-storefront-ltsr-with-netscaler-anddisa-stigs/

 Amazon Elastic Load Balancing (ELB) (https://aws.amazon.com/pt/elasticloadbalancing/)

Disponibilidade de Serviços 🚵 stio

- Planos necessários para definir e garantir a Disponibilidade:
 - Business Continuity Plan (BCP)
 - Documento que define qual a informação crítica de uma organização, ou seja, aquela que não pode falar para não interromper a atividade da organização!
 - Disaster Recovery (DR)
 - Plano de recuperação após um evento que gerou a destruição completa da informação e equipamentos principais (p.e. incêndios, inundações, terramotos, ataques terroristas, etc);

Disponibilidade de Serviços 🖀 stio

- Business Continuity Plan (BCP)
 - Documento que define qual a informação crítica de uma organização, ou seja, aquela que não pode faltar para não interromper a atividade da organização!
 - É um processo proativo que visa minorar os riscos de perda de informação;
 - Envolve:
 - Sistemas
 - Processos

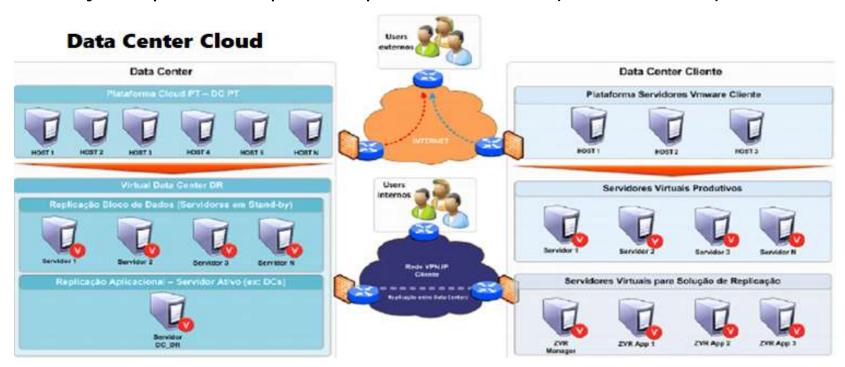
Disponibilidade de Serviços 🚵 stio

- Business Continuity Plan (BCP)
 - O que deve fazer parte do BCP:
 - Definir a informação crítica para a empresa;
 - Como essa informação existe e se mantém;
 - Quem são as pessoas responsáveis pela sua manutenção;
 - Qual o processo de manutenção e recuperação em caso de perda;
 - Quais os custos destes processos.
 - É um documento sucinto e preciso, em constante evolução e melhoria.

Disponibilidade de serviços Disaster Recovery

- Plano de Disaster Recovery (DR) Define como se faz a recuperação após um evento que gerou a destruição completa da informação e equipamentos principais (p.e. incêndios, inundações, terramotos, ataques terroristas, ataques informáticos, etc);
- É um processo <u>reativo</u> que é suportado no BCP.
- Métricas:
 - RTO Recovery Time Objective Tempo que demora desde a ocorrência do desastre até os serviços estarem disponíveis;
 - RPO Recovery Point Objective Define a quantidade de informação que se assume perdida num desastre; define o intervalo de backup da informação; no limite, a informação que se perde é a produzida entre o último Backup e o momento do Desastre.

Disponibilidade de serviços Disaster Recovery


- Como implementar Disaster Recovery (DR)
 - Hoje em dia os servidores de organizações estão virtualizados, são software...
 - É relativamente simples copiar, mover...
 - Várias opções:
 - Manter cópias atualizadas dos servidores em local fora da empresa
 - Duplicar Hardware e servidores na LAN num ponto afastado do DataCenter Principal
 - Criar um virtual Data Center na Cloud que replica o Data Center Principal
 - Exemplo de aplicações de duplicação permanente de Servidores:
 - Zerto: https://www.zerto.com/
 - Veeam: https://www.veeam.com/

Exemplo de DR

DR suportado em Cloud:

- •Imagens dos servidores virtuais no Data Center Cloud
- •Ligações de Backend (via VPN na rede do operador) ao Data Center com débito garantido em ambiente seguro;
- Tempos curtos para RPO atualização das imagens dos servidores;
- •Endereços IP públicos replicados pelo Data Center (diminui o RTO).

Resumo do Capítulo

- Arquiteturas de Data Center
- Avaliação e Disponibilidade de Redes
- Monitorização
 - Monitorização de Redes e Sistemas
 - Arquitetura SNMP
 - Arquitetura WMI
 - Ferramentas de monitorização

- A MONITORIZAÇÃO é fundamental para uma eficaz gestão das redes e sistemas informáticos.
- A sua motivação deriva da necessidade que o gestor de rede tem de conhecer, avaliar, medir e prever o desempenho de todos os elementos.
- O CONHECIMENTO da rede, das suas vulnerabilidades e ameaças é uma ferramenta que antecipa problemas e permite fornecer aos utilizadores uma experiência melhorada dos serviços que necessita.

 As necessidades de gestão de redes têm evoluído:

• Garantir conetividade
 • Garantir Débito

 • Evolução Equipamentos
 • Evolução das Necessidades
 • Maior complexidade de redes e sistemas

 • Gerir Qualidade de Serviço
 • Gerir aplicações e utilizadores
 • Gerir Segurança

 • Garantir conetividade

Níveis OSI

Atual

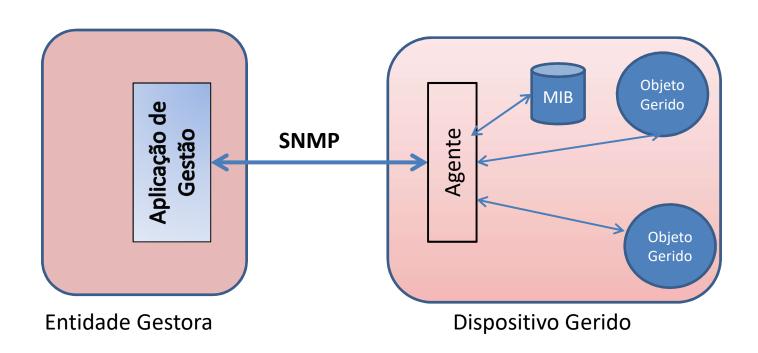
- Algumas atividades de monitorização numa rede de computadores:
 - Conetividade dos equipamentos;
 - Desempenho de serviços;
 - Medição de parâmetros;
 - Análise de tráfego e protocolos;
 - Deteção de intrusões;
 - Suporte técnico aos utilizadores;

— ...

- A MONITORIZAÇÃO DE REDE inclui um conjunto de tarefas e funcionalidades muito úteis na gestão de redes:
 - Deteção de avarias através de envio de alertas ou notificações ao gestor;
 - Gestão pró-ativa deteção e correção de anomalias
 - Documentação ou inventário da rede;
 - Acesso a ferramentas gráficas acerca do estado das redes, equipamentos, serviços e tráfego;
 - Medições e avaliação de desempenho tendo em conta níveis de serviço exigidos.

ARQUITETURA SNMP

- A arquitetura mais utilizada é a SNMP Simple Network Menagement Protocol
 - Normalizada pelo IETF em 1990 e está agora na versão SNMPv3;
 Ver: https://searchnetworking.techtarget.com/feature/The-fundamentals-of-availability-monitoring-tools
 - Componentes:
 - Uma ou mais entidades de gestão coordenados MIB RMON;
 - Agentes de Gestão;
 - MIB
 - Arquitetura modular
 - Linguagem SMI define como a informação está estruturada nas MIB
 - Definição do tipo de informação a armazenar
 - Protocolo SNMP para a comunicação
 - Funcionalidades de segurança da informação


ARQUITETURA DA GESTÃO DE stio REDES

- Componentes da gestão de redes:
 - Entidade gestora (managing entity) aplicação que centraliza a informação e alertas sobre a atividade da rede e permite a gestão dos dispositivos;
 - Dispositivo gerido (menaged devices) qualquer equipamento a ser gerido. Tem um ou mais objetos geridos (interfaces, software, etc). Em cada dispositivo corre um denominado processo agente que se encarrega de comunicar com a entidade gestora. O agente recorre a uma base de dados (MIB – menagement information base) que definem o tipo de objetos geridos e sua informação.
 - Protocolo de Gestão forma de comunicação entre a entidade gestora e os agentes.

ARQUITETURA DA GESTÃO DE REDES

Exemplos:

Aplicação de Gestão: NAGIOS, MRTG, Spiceworks, etc.

Objeto Gerido: Placa de Rede, CPU, Memória, etc.

PROTOCOLO SNMP

- Regula a comunicação entre a entidade gestora e os agentes localizados nos objetos/dispositivos geridos;
- Permite combinar monitorização ativa com passiva
- Sete tipos de mensagens (PDU, utilizam porto 161)
 - GetRequest, GetNextRequest, GetBulkRequest da entidade gestora para os agentes a pedir informação;
 - SetRequest da entidade gestora para os agentes a alterar informação;
 - InformRequest troca de informação entre gestores
 - Trap alerta enviado pelo agente
 - ResponsePDU resposta do agente aos GET e SET.

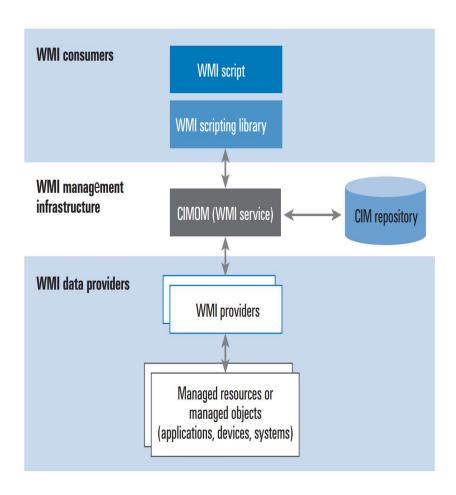
MIB

MIB – Menagement Information Base

- Os módulos MIB reúnem a informação dos objetos a monitorizar numa rede;
- É um Ficheiro ASCII com a descrição formal dos objetos num dispositivo. A entidade gestora tem de compilar este ficheiro para o poder interpretar.
- Cada objeto inclui um identificador (OID) em formato hierárquico
- Para identificar os objetos recorre a uma linguagem específica para a estrutura dos dados (SMI - Structure of Management Information)

WMI

WMI - Windows Management Instrumentation


- Em sistemas Windows, o WMI é a estrutura tipicamente usada para monitorização
- Permite obter dados de equipamentos Windows (PC´s, Servidores, etc) com mais informação do que via SNMP.
- Através do WMI é possível gerir computadores localmente ou remotamente (desde que tenha as permissões necessárias) recolhendo dados e alterando o estado dos objetos e das entidades físicas correspondentes, sejam elas hardware ou software (serviços, contas de utilizadores...).

ARQUITETURA WMI

Arquitetura WMI:

- Consumers: sistema
 que recebe e trata a
 informação p.e.
 softwares de
 monitorização
 - O acesso à informação de monitorização é feito através de scripts em qualquer linguagem que permita o controlo de objetos Microsoft ActiveX (p.e. C, C++, Python, VB Scripts, etc.)

ARQUITETURA WMI

Arquitetura WMI:

 Data Providers: sistema que lê a informação dos recursos geridos.

 A informação está organizada na linguagem WQL (Windows Query Language) que segue uma estrutura semelhante a

uma estrutura SQL:

Concept	SQL	WMI
Individual items	rows	instances
Characteristics	columns	properties
Containers of columns and rows	tables	classes
Containers of tables	databases	namespaces
Program code that functions on data	stored procedures	methods

ARQUITETURA WMI

- Arquitetura WMI:
 - WMI Infrestructure
 - Componente do SO Windows que controla e define a comunicação entre os consumers e os providers
 - É aqui que estão definidas as classes, por exemplo.

Impacto sobre a infraestrutura de rede

- A ativação de sistemas de monitorização têm impactos nas infraestruturas de rede que não devem ser descurados:
 - Consumo de largura de banda, nomeadamente em scans à rede;
 - Ativação de funcionalidades nos dispositivos que implicam abrir portas que podem ser usadas por terceiros para aceder à informação dos utilizadores e dos sistemas.
 - Ter o cuidado de configurar os firewalls para permitir a comunicação dos protocolos de monitorização.

SISTEMAS DE MONITORIZAÇÃO

- Devem permitir não apenas verificar conetividade mas também desempenhos e disponibilidade de serviços.
- Análise de soluções existentes
 - Produtos comerciais abrangentes nas funcionalidades, com custos significativos e adaptadas a meios homogéneos.

Exemplos: HP BTO (Business Technology Optimization), CiscoWorks, IBM Tivoli e outras

SISTEMAS DE MONITORIZAÇÃO

- Oferta Open Source:
 - Conjunto de ferramentas disponibilizadas gratuitamente independentes de fabricantes.

Exemplos mais comuns:

- MRTG mede desempenho e tráfego na rede
- NAGIOS plataforma de inventariação e gestão
- Spiceworks ou PRTG exemplos de plataformas de inventariação e monitorização opensource com interface web

spiceworks

PRTG NETWORK MONITOR

CAPÍTULO 5

DÚVIDAS?